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ON THE CONVERGENCE OF FARIMA SEQUENCE TO
FRACTIONAL GAUSSIAN NOISE

Joo-Mok Kim*

Abstract. We consider fractional Gussian noise and FARIMA
sequence with Gaussian innovations and show that the suitably
scaled distributions of the FARIMA sequences converge to frac-
tional Gaussian noise in the sense of finite dimensional distributions.
Finally, we figure out ACF function and estimate the self-similarity
parameter H of FARIMA(0, d, 0) by using R/S method.

1. Introduction

Many researchers have studied long range dependent process and
self-similar processes which appear in many contexts, for example, in
the analysis of traffic load in high speed networks([6], [7]). On the
other hand, self-similarity, long range dependence and heavy tailed pro-
cess have been observed in many time series, i.e. signal processing and
finance([4], [6]).

Though the various models proposed for capturing the long range
dependent nature of network traffic are all either exactly or asymptoti-
cally second order self-similar, their effect on network performance can
be very different([8], [9], [10]). Various methods for estimating the self-
similarity parameter H or the intensity of long-range dependence in a
time series has investigated([9], [11]).

In particular, fractional Gaussian noise and FARIMA sequence in
packet network traffic has been the focus of much attention ([5]). And,
there has been a recent flood of literature and discussion on the tail be-
havior of queue-length distribution, motivated by potential applications
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to the design and control by high-speed telecommunication networks([1],
[2], [3]).

In this paper we consider fractional Gussian noise and FARIMA se-
quence with Gaussian innovations and show that the suitably scaled
distributions of the FARIMA sequences converge in sense of finite dimen-
sional distributions. On the other hand, we describe the R/S method
to estimate the self-similarity H of FARIMA sequence.

In section 2, we define long range dependence, self-similar process,
fractional Brownian motion, fractional Gaussian noise and FARIMA
processes with Gaussian innovations. In section 3, we prove the weak
convergence of FARIMA sequence to fractional Gaussian noise. In sec-
tion 4, we figure out autocorrelation function and estimate the self-
similarity parameter H of FARIMA(0, d, 0).

2. Definition and preliminary

In this section we first define short range dependence and long range
dependence. Let τX(k) be the covariance of stationary stochastic process
X(t).

Definition 2.1. A stationary stochastic process X(t) exhibits short
range dependence if

∞∑

k=−∞
|τX(k)| < ∞.

Definition 2.2. A stationary stochastic process X(t) exhibits long
range dependence if

∞∑

k=−∞
|τX(k)| = ∞.

A standard example of a long range dependent process is fractional
Brownian motion, with Hurst parameter H > 1

2 .

Definition 2.3. A continuous process X(t) is self-similar with self-
similarity parameter H ≥ 0 if it satisfies the condition:

X(t) d= c−HX(ct), ∀ t ≥ 0, ∀c > 0,

where the equality is in the sense of finite-dimensional distributions.
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Self-similar processes are invariant in distribution under scaling of
time and space. Brownian motion is a Gaussian process with mean zero
and autocovariance function

E[X(t1)X(t2)] = min(t1, t2).

It is H self-similar with H = 1/2. And Fractional Brownian motion is
important example of self-similar process.

Definition 2.4. A stochastic process {BH(t)} is said to be a frac-
tional Brownian motion(FBM) with Hurst parameter H if

1. BH(t) has stationary increments
3. BH(0) = 0 a.s.
4. The increments of BH(t), Z(j) = BH(j + 1)−BH(j) satisfy

ρZ(k) =
1
2
{|k + 1|2H + |k − 1|2H − 2k2H}

Definition 2.5. Let

Gj = BH(j + 1)−BH(j), j = · · · ,−1, 0, 1, · · · .

The sequence {Gj , j ∈ Z} is called fractional Gaussian noise (FGN).

Since fractional Brownian motion {BH(t) : t ∈ R} has stationary
increments, its increments Gj form a stationary sequence. Fractional
Gaussian noise is a mean zero and stationary Gaussian time series whose
autocovariance function τ(h) = EGiGi+h is given by

τ(h) = 2−1{(h + 1)2H − 2h2H + |h− 1|2H},
h ≥ 0. As h →∞,

τ(h) ∼ H(2H − 1)h2H−2.

Since τ(h) = 0 for h ≥ 1 when H = 1/2. the Gi are white noise. When
1/2 < H < 1, they display long-range dependence.

We introduce a FARIMA(p, d, q) which is both long range dependent
and has heavy tails. FARIMA(p, d, q) processes are capable of modeling
both short and long range dependence in traffic models since the effect
of d on distant samples decays hyperbolically while the effects of p and
q decay exponentially.

Definition 2.6. A stationary process Xt is called a FARIMA(p, d, q)
process if

φ(B)∇dXt = θ(B)Zt

where φ(B) = 1− φ1B − · · · − φpB
p, θ(B) = 1− θ1B − · · · − θqB

q and
the coefficients φ1, · · · , φp and θ1, · · · , θq are constants,
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∇d = (1−B)d =
∞∑

i=0

bi(−d)Bi

and B is the backward shift operator defined as BiXt = Xt−i and

bi(−d) =
i∏

k=1

k + d− 1
k

=
Γ(i + d)

Γ(d)Γ(i + 1)
.

For large lags d, the autocovariance function satisfies for 0 < d < 1/2,

τ(h) ∼ Cdh
2d−1 as h →∞

where Cd = π−1Γ(1 − 2d) sin(πd). Thus, for large lags d, the autoco-
variance function has the same power decay as the autocovariance of
fractional Gaussian noise. Relating the exponents gives

d = H − 1
2
.

3. Weak convergence of FARIMA sequence to fractional
Gaussian noise

Lemma 3.1. Fix 0 < H < 1 and let {Zj , j = · · · ,−1, 0, 1, · · · } be a
stationary Gaussian sequence with mean zero and autocovariance func-
tion τ(j) = EZ0Zj satisfying:

(i) Case 1/2 < H < 1 :

τ(j) ∼ cj2H−2 as j →∞ with c > 0;

(ii) Case H = 1/2 :

∞∑

j=1

|τ(j)| < ∞,
∞∑
−∞

τ(j) = c;

(iii) Case 0 < H < 1/2 :

τ(j) ∼ cj2H−2 as j →∞ with c < 0 and
∞∑
−∞

τ(j) = c;

Then the finite dimensional distributions of {N−H
∑[Nt]

j=1 Zj , 0 ≤ t ≤ 1}
converge to those of {σ0BH(t), 0 ≤ t ≤ 1} where

σ2
0 =





H−1(2H − 1)−1c if 1/2 < H < 1,
c if H = 1/2,
−H−1(2H − 1)−1c if 0 < H < 1/2.
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Proof. (Theorem 7.2.11 of [5])

Theorem 3.2.

1
NH

1
M1/2

(i+1)N∑

k=iN+1

M∑

j=0

bj(−d)ak−j

converges to σ0Gi in the sense of finite dimensional distributions, as

M →∞ and T →∞, where, σ2
0 = −Γ(2−2H) cos(πH)

πH(2H−1) .

Proof. By Lemma 2 of [4],

lim
M→∞

1
M1/2

M∑

j=0

bj(−d)ak−j = GH(k).

Here, GH(k) represents a stationary Gaussian process whose covariance
function has the form τ(k) ∼ ck2H−2 and 1/2 < H < 1.
And, the covariance function of

∑∞
j=0 bj(−d)ak−j ,

τ(k) ∼ Γ(1− 2d) sin(πd)
π

k2d−1

=
−Γ(2− 2H) cos(πH)

π
k2H−2

where H = d + 1/2 , has the same form as ck2H−2. Therefore,

lim
N→∞

lim
M→∞

1
NH

1
M1/2

(i+1)N∑

k=iN+1

M∑

j=0

bj(−d)ak−j =
1

NH

(i+1)N∑

k=iN+1

GH(k)

converges to σ0Gi in the sense of finite dimensional distributions.
By Lemma 3.1, with σ0 =

√
−Γ(2−2H) cos(πH)

πH(2H−1) ,

N−H

(i+1)N∑

k=iN+1

GH(k) = N−H

(i+1)N∑

k=1

GH(k)−N−H
iN∑

k=1

GH(k)

converge to
σ0BH(i + 1)− σ0BH(i) = σ0Gi.

Theorem 3.3. Let Xi be the autoregressive process of order one, i.e.
Xi = φ1Xi−1 + ai, where ai ∼ N(0, 1) for each i. Then

lim
N→∞

1
NH

(i+1)N∑

k=iN+1

Xk = σ0Gi,
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where, σ0 =
√

φ1/1− φ1

Proof. We know that

(1− φ1B)Xi = ai,

i.e.

Xi =
∞∑

k=0

φk
1ai−k.

And, we get
CovX(k) = φk

1, k ≥ 1, |φ1| < 1.

Therefore,
τ(k) = φk

1.

Since
∞∑

k=1

τ(k) =
∞∑

k=1

φk
1 =

φ1

1− φ1
< ∞,

by Lemma 3.1 (b), we get

lim
N→∞

1
NH

(i+1)N∑

k=iN+1

Xk =
√

φ1/(1− φ1)Gi.

For each N ≥ 1, the transformation

TN : Z → TNZ = {(TNZ)i, i = · · · ,−1, 0, 1, · · · },
where

(TNZ)i =
1

NH

(i+1)N∑

j=iN+1

Zj , i = · · · ,−1, 0, 1, · · · .

Let {XH(t) : t ∈ R} be a H self-similar with stationary increments.
Then its increments

Yj = XH(j + 1)−XH(j), j = · · · ,−1, 0, 1, · · ·
is a stationary sequence.

Theorem 3.4.

TNY
d= Y
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Proof. For any θ1, θ2, · · · , θd, d ≥ 1, and N ≥ 1,

d∑

i=1

θi
1

NH

(i+1)N∑

j=iN+1

Yj =
d∑

i=1

θi
1

NH
(XH((i + 1)N)−XH(iN))

d=
d∑

i=1

θi(XH((i + 1))−XH(i))

=
d∑

i=1

θiYi.

Corollary 3.5. Fractional Gaussian noise is the only Gaussian se-

quence satisfying TNY
d= Y.

Proof. It follows from the fact that fractional Brownian motion is the
unique Gaussian H self-similar process with stationary increments.

4. Estimation of the self-similarity parameter of ARIMA
sequence with Gaussian innovations

When d < 1/2, the FARIMA process is stationary and the covariance
function of a FARIMA(0, d, 0) process with zero mean and unit variance
Gaussian innovations has the form

τ(k) =
(−1)k(−2d)!

(π − d)!(−k − d)!

∼ Γ(1− 2d) sin(πd)
π

k2d−1 as k →∞

The covariance function of the generalized FARIMA(p, d, q) proce-
sses with Gaussian innovations has additional short-term components
but follows the same asymptotic relation as the covariance function as
FARIMA(0, d, 0) processes.

Hence, we consider FARIMA(0, d, 0) in terms of d = 0.2 and estimate
the self-similarity parameter H.

The R/S method which was used by Taqqu and Willinger([10]) is
one of the better known method. For a time series X = {Xi : i ≤
1}, with partial sum Y (n) =

∑n
i=1 Xi, and sample variance S2(n) =
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(1/n)
∑n

i=1 X2
i − (1/n)2Y (n)2, the R/S static, or the rescaled adjusted

range, is given by
R

S
(n) =

1
S(n)

[
max0≤t≤n(Y (t)− t

n
Y (n))−min0≤t≤n(Y (t)− t

n
Y (n))

]
.

For fractional Gaussian noise

E[R/S(n)] ∼ CHnH , as n →∞,

where CH is positive, finite constant not depend on n.

Figure 1. Simulated FARIMA(0, 0.2, 0), n = 1, 000

Figure 2. Estimating H

The following figure 1 and figure 3 illustrate FARIMA processes in
the case n = 1, 000 and n = 10, 000.
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To determine H using the R/S statistic, proceed as follows. For a
time series of length N , subdivide the series into blocks. Then, for each
lag n, compute R(n)/S(n). Choosing logarithmically spaced values of
n, plot log[R(n)/S(n)] versus log(n) and get, for each n, several points
on the plot.

In figure 2 and figure 4, we estimate H as 0.6859 and 0.6968.

Figure 3. Simulated FARIMA(0, 0.2, 0), n = 10, 000

Figure 4. Estimating H
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